12⋅tan2(x)−8sec2(x)−3cot(x)+1012\cdot\tan^2\left(x\right)-8\sec^2\left(x\right)-\frac{3}{\cot\left(x\right)}+1012⋅tan2(x)−8sec2(x)−cot(x)3+10
limx→0(sin(x)−tan(x)sin(x))\lim_{x\to0}\left(\frac{\sin\left(x\right)-\tan\left(x\right)}{\sin\left(x\right)}\right)x→0lim(sin(x)sin(x)−tan(x))
(x+1)2−(x−1)2+12 >0\left(x+1\right)^2-\left(x-1\right)^2+12\:>0(x+1)2−(x−1)2+12>0
−4. 8 : 16 + 16 : −4 − 4 : −2 ⋅9-4.\:8\::\:16\:+\:16\::\:-4\:-\:4\::\:-2\:\cdot9−4.8:16+16:−4−4:−2⋅9
y=3x−2xy=3x^{-2x}y=3x−2x
(−8+3⋅7)−(44−(−6)+5⋅(−9))\left(-8+3\cdot7\right)-\left(44-\left(-6\right)+5\cdot\left(-9\right)\right)(−8+3⋅7)−(44−(−6)+5⋅(−9))
cscx−tanx2=−cotxcscx-tan\frac{x}{2}=-cotxcscx−tan2x=−cotx
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!