$\lim_{x\to\infty}\:\left[\sqrt{3x-2}-\sqrt{3x+4}\right]$
$\frac{x^2+4}{x^2-6x}$
$\equiv\theta\tau100+\theta\tau$
$\lim_{x\to\infty}\left(\left(x\left(\sqrt{3}x-\sqrt{3x^2+1}\right)\right)\right)$
$4xy-2y^2$
$\left(6-\left(30-12\right)\cdot\left(-3\right)\right)\cdot\left(4\right)$
$\int\left(x^2+6\right)\cdot sex\left(2x\right)dx$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!