$\lim_{x\to\infty}\left(\frac{e^{2x}-e^{-2x}}{ln\left(x+1\right)}\right)$
$\frac{29.095}{2.3}$
$21\left(-11\right)$
$2x^2-4x+3$
$\int_0^1x^3\left(lnx\right)^3dx$
$y\left(1-x^2\right)\frac{dy}{dx}=4x\left(1-2y^2\right)$
$\left(3x^4-8x^3+8x^2+1\right)\::\:\left(3x^2-2x-1\right)$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!