$\ln\left[\frac{x^2-x-2}{\left(x+5\right)^3}\right]^{\frac{1}{4}}$
$\frac{x^2}{3}-\frac{x}{5}+6$
$\frac{dy}{dt}=\frac{e^{-y^2}}{y}\left(t+1\right)$
$\lim_{x\to infinity}\left(10xtan\left(\frac{3}{x}\right)\right)$
$\int\frac{1}{\sqrt{\left(x\right)^2+\left(y\right)^2}^3}dx$
$-4x^2+120x=0$
$9x^4y^3-20x^4y^3$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!