$\frac{dy}{dx}+\frac{y}{x^2}=0$
$\lim_{x\to2}\left(\frac{x+1}{2\left(x\right)-4}\right)$
$\frac{\left(1+6x\right)}{\left(4x-3\right)\left(2x+5\right)}$
$\int\frac{\left(x^3\right)}{\left(\left(x^2-4\right)^2\right)}dx$
$x^2-10x+26=8$
$\left(\frac{1}{4}x^2+\frac{1}{3}y-1\right)^2$
$-2\left(x^2-1\right)=12$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!