Applying the trigonometric identity: 1secn(θ)=cosn(θ)\displaystyle\frac{1}{\sec^{n}(\theta)}=\cos^{n}(\theta)secn(θ)1=cosn(θ)
Try other ways to solve this exercise
2x+12x+1442x+12x+1442x+12x+144
36y2−4836y^2-4836y2−48
s2−6s+9=0s^2-6s+9=0s2−6s+9=0
v2+20v=−7v^2+20v=-7v2+20v=−7
4(−3)2(12)−6(−3)(12)(−13)4\left(-3\right)^2\left(\frac{1}{2}\right)-6\left(-3\right)\left(\frac{1}{2}\right)\left(-\frac{1}{3}\right)4(−3)2(21)−6(−3)(21)(−31)
(y+6)(y−2)\left(y+6\right)\left(y-2\right)(y+6)(y−2)
ddxy=tan1x\frac{d}{dx}y=\tan\frac{1}{x}dxdy=tanx1
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!