(1⋅secx)+(secx⋅tanx)(x)\left(1\cdot secx\right)+\left(secx\cdot tanx\right)\left(x\right)(1⋅secx)+(secx⋅tanx)(x)
limx→0e(x)−((x+1)cos (kx))\lim_{x\to0}e\left(x\right)-\left(\left(x+1\right)\cos\:\:\:\:\left(kx\right)\right)x→0lime(x)−((x+1)cos(kx))
x5 e3xx^5\:e^3xx5e3x
dydx=e2⋅xey\frac{dy}{dx}=e^{2\cdot x}e^ydxdy=e2⋅xey
8cos(60)+3csc(60)8\cos\left(60\right)+\sqrt{3}\csc\left(60\right)8cos(60)+3csc(60)
∣−15−9∣|-15-9|∣−15−9∣
−9⋅14-9\cdot14−9⋅14
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!