$\int\:17\:dx$
$\frac{\left(k+1\right)\left(k+2\right)\left(4k+3\right)}{3}\:+k+1\:=\:\frac{\left(4k^2+11k+9\right)\left(k+1\right)}{3}$
$sec^2\left(x\right)+tan^2\left(x\right)cos\left(2x\right)=2sin^2\left(x\right)+1$
$6^{-3}\cdot6^5$
$^{12}\sqrt{\left(2^6\right)}$
$\left(t^2+1\right)\frac{dw}{dt}+tw=t$
$\frac{1}{x^2}+4x+4$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!