limx→0(sin(2x)⋅cos(x)sin(x))\lim_{x\to0}\left(\frac{\sin\left(2x\right)\cdot\cos\left(x\right)}{\sin\left(x\right)}\right)x→0lim(sin(x)sin(2x)⋅cos(x))
∫(30x2−20)2x3−4x−9dx\int\frac{\left(30x^2-20\right)}{2x^3-4x-9}dx∫2x3−4x−9(30x2−20)dx
∫ (x2−25)32dx\int\:\:\left(x^2-25\right)^{\frac{3}{2}}dx∫(x2−25)23dx
3(a+b)+x(a+b)3\left(a+b\right)+x\left(a+b\right)3(a+b)+x(a+b)
3cot2x=93cot^2x=93cot2x=9
(3x2−4y2)2\left(3x^2-4y^2\right)^2(3x2−4y2)2
dydx=4−y2, y(0)=3\frac{dy}{dx}=4-y^2,\:\:\:y\left(0\right)=3dxdy=4−y2,y(0)=3
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!