Exercise
$7\cos\left(x\right)\tan\left(x\right)-10\tan\left(x\right)=0$
Step-by-step Solution
Learn how to solve problems step by step online. Solve the trigonometric equation 7cos(x)tan(x)-10tan(x)=0. Applying the trigonometric identity: \tan\left(\theta \right)\cos\left(\theta \right) = \sin\left(\theta \right). Applying the tangent identity: \displaystyle\tan\left(\theta\right)=\frac{\sin\left(\theta\right)}{\cos\left(\theta\right)}. Combine all terms into a single fraction with \cos\left(x\right) as common denominator. Using the sine double-angle identity: \sin\left(2\theta\right)=2\sin\left(\theta\right)\cos\left(\theta\right).
Solve the trigonometric equation 7cos(x)tan(x)-10tan(x)=0
Final answer to the exercise
$x=0+2\pi n,\:x=\pi+2\pi n\:,\:\:n\in\Z$