32⋅1932\cdot1932⋅19
5x3−8≥(2x−3)13\frac{5x}{3}-8\ge\left(2x-3\right)\frac{1}{3}35x−8≥(2x−3)31
x−4−2x+1x-4-2x+1x−4−2x+1
−4(1+5n)+9-4\left(1+5n\right)+9−4(1+5n)+9
limx→∞(x3e−x2)\lim_{x\to\infty}\left(\frac{x^3}{e^{-x^2}}\right)x→∞lim(e−x2x3)
4x4−2x3+x−22x2−x−1\frac{4x^4-2x^3+x-2}{2x^2-x-1}2x2−x−14x4−2x3+x−2
∫x3(1−x2)32dx\int x^3\left(1-x^2\right)^{\frac{3}{2}}dx∫x3(1−x2)23dx
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!