$7 x ^ { 4 } y + 5 x ^ { 2 } y + 10 x$
$\frac{40\cdot in\left(\frac{10}{125}\right)}{in\left(\frac{35}{125}\right)}$
$\int\frac{\left(6x-1\right)}{e^{4x}}dx$
$-x^2-2x+8\ge0$
$\left(2x+3\right)\left(2x^2-6x+9\right)$
$1+\frac{\tan^{2}\theta}{\sec\theta+1}=\sec\theta$
$\left(x-a\right)\left(x+a\right)=x^2-a^2$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!