∫4t2+3t+1(t3+t2)dx\int\frac{4t^2+3t+1}{\left(t^3+t^2\right)}dx∫(t3+t2)4t2+3t+1dx
14x14\frac{1}{4}x\frac{1}{4}41x41
2u2−u−1=02u^2-u-1=02u2−u−1=0
x+9≥10x+9\ge10x+9≥10
dydx−7y=0\frac{dy}{dx}-7y=0dxdy−7y=0
limx→∞(2+x)2−4x\lim_{x\to\infty}\frac{\left(2+x\right)^2-4}{x}x→∞limx(2+x)2−4
(5+a)2 \left(5+a\right)^2\:(5+a)2
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!