$b^2+7b=8$
$\lim_{x\to1}\left(\frac{\sqrt{x^3+x-1}-1}{\sqrt[3]{x^2+7x}-2}\right)$
$-y^2dv+y\sqrt{v}dy=0$
$\left(x^3y^3\right)dx+\left(x^3y^2\right)dy=0$
$\frac{d^2}{dx^2}\left(x\cdot\cos\left(2x\right)\right)$
$\frac{dy}{dx}+\frac{y}{x+4}=5$
$43+13+1+\left(-10\right)$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!