$\cos\left(a\right)^4-\sin\left(a\right)^4=\cos\left(a\right)^2-\sin\left(a\right)^2$
$\int6^{x+3}dx$
$\lim_{x\to\frac{\pi}{2}}\left(\frac{tan\left(18x\right)}{tan\left(21x\right)}\right)$
$\frac{cos\:2x}{2\:sin\:2x\:+cos\:2x}=\frac{1}{2tan2t\:+1}$
$f\left(x\right)=\frac{-2}{\sqrt{x}}+\frac{\sqrt[5]{x}}{3}$
$\left(6^{x^2}\:^{y^3}+1\right)$
$12\cdot\left[40+\left(-3\right)\right]$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!