$+\frac{\infty}{\infty}$
$\int_0^2\sqrt{x^2+1\:x}dx$
$f\left(x\right)=10x^5+2$
$sec\:u\:+tan\:u\:=\frac{cos\:u}{1-sin\:u}$
$\int\left(x-2\right)\cdot\ln\left(8x\right)dx$
$\frac{5x^4+0x^3+2x^2+0x-3}{x^3-4}$
$\frac{dy}{dx}=y^2\sin\left(5x\right)$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!