$\lim\:_{x\to\:\infty\:\:}\left(\left(x+6\right)-\sqrt{4x^2-4x+9}\right)$
$\log\left(3v+9\right)=\log\left(v+5\right)$
$\frac{5x^2-x-160}{x^2-25}$
$x+2>6-3x$
$\lim_{x\to7}\left(\frac{x-7}{3x^2-21}\right)$
$\frac{3x+5}{3}-\frac{1}{2}>\frac{1}{6}$
$\left(5a^2b-\frac{7}{5}b^3\right)$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!