$\sec x-\cot x$
$\lim_{x\to\infty}\left(\left(1+\frac{3}{x}\right)^{\sqrt{x}}\right)$
$\left(\frac{3}{4}x^2y^3\right)^3\left(\frac{3}{16x^5}\right)^2$
$\left(x^2+3\right)\left(x-3\right)\left(x+4\right)$
$\left(3\right)^2+8-10\left(-2\right)$
$3\cos\left(\pi x\right)=2$
$csc^2\left(x\right)-\frac{cot\left(x\right)}{tan\left(x\right)}=1$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!