$\lim\:_{x\to\:\infty\:}\frac{\left(x^3-3x^2+2x+1\right)}{2x+2}$
$9\left(-6\:-\:4k\right)$
$y'=\left(15x^2+4\right)\left(6y+5\right)$
$\left(-4X^2\right)=\left(5X+1\right)$
$\int_{0}^{1}e^{2x-1}dx$
$\left(a^{2xy}+8\right)^3$
$\frac{d}{dx}e^{x^{5lnx}}$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!