$\left(tanx\:+\:cotx\right)^2=sec^4cot^2$
$\left(4h^3r^2\right)^3$
$x^2-x+28=0$
$\frac{cot^2\left(x\right)-1}{1+cot^2\left(x\right)}=\:2cos2\:\left(x\right)-1$
$4\cdot\left(-1\right)-\left(-1\right)-\left(-1\right)-\left(-1\right)$
$\lim_{b\to\infty}\left(\frac{b^2\cdot e^{-\left(s+2\right)b}}{s+2}\right)$
$x^2+x-182=0$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!