$\int_{y^2+1}^2\left(y^2\right)dx$
$\left(3x^2y+2z\right)\left(3x^2y-2z\right)$
$-\left(\:x\:+\:y\:+\:z\:\right)\:-\left(\:x\:-\:2y\:\right)-\:\left(\:15y\:+\:16z\:-\:12x\:\right)$
$\frac{d}{dx}\left(2x^2+9xy+9y^2+17y-8=0\right)$
$-x^2+9x-20$
$\left(a^2-b^2\right)\left(a^2+ab+b^2\right)\left(a^2-ab+b^2\right)$
$12t^2-2t-4$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!