$\lim_{x\to0}\left(\frac{x^2+2x}{x^4}\right)$
$x^3+x^2-3x+2;x=0$
$\frac{2x^3-3x^2-7}{x+1}$
$\left(x+1\right)^3\left(2x+1\right)^4$
$\lim_{x\to1}\left(\frac{\sqrt[3]{x}-\sqrt{x}}{\sqrt{x}-\sqrt[6]{x}}\right)$
$-3x^2+4x-3\ge0$
$-2x+8=18$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!