$\lim_{x\to\infty}\left(\frac{1}{\sqrt{1+\sqrt{\frac{1}{\sqrt{x}}}}}\right)$
$cot^{\left(2\right)}xcos^{\left(2\right)}x=cot^{\left(2\right)}x-cos^{\left(2\right)}x$
$8+5\:.\:\:\left|\left(-2\right)-\left(+5\right).\left(-2\right)\right|$
$4a^2+28a+49$
$\left(-\frac{7x^5z^5}{y^5}\right)^3$
$\frac{dy}{dx}=e^{-y+sinx}.\cos\left(x\right)$
$\left(2xy+x^2+3y^2\right)y'\:+\left(y^2+2xy+3x^2\right)=0$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!