$\frac{dy}{dx}=\left(y+1\right)\left(y-4\right)$
$\lim_{x\to\infty}\left(\frac{5x+\sqrt{x^2-1}}{\sqrt{x^2+4}}\right)$
$\lim_{x\to0}\left(\frac{4x\left(cos\left(6x\right)-1\right)}{sin\left(3x\right)-3x}\right)$
$\sin\:\left(4x\right)-4\cdot\:\sin\:\left(x\right)\cdot\:\cos\:\left(x\right)+8\cdot\:\sin\:^3\left(x\right)\cdot\:\cos\:\left(x\right)=0$
$\left(\frac{x-7}{x+2}\right)^4$
$\frac{x^4-8x^3+3x+10}{x+10}$
$\sqrt[9]{0}$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!