∫ (3x−5)(x−1)(x2−1)dx\int\:\frac{\left(3x-5\right)}{\left(x-1\right)\left(x^2-1\right)}dx∫(x−1)(x2−1)(3x−5)dx
x2−9500=30,500x^2-9500=30,500x2−9500=30,500
tan(54)tan(6)\tan\left(54\right)\tan\left(6\right)tan(54)tan(6)
e3ydy=e2xdxe^{3y}dy=e^{2x}dxe3ydy=e2xdx
(2x2−3)(2x2+5)\left(2x^2-3\right)\left(2x^2+5\right)(2x2−3)(2x2+5)
2ax3−3ay32ax^3-3ay^32ax3−3ay3
∫300∞(195x12e−15x13)dx\int_{300}^{\infty}\left(195x^{12}e^{-15x^{13}}\right)dx∫300∞(195x12e−15x13)dx
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!