$\left(\cos\left(x\right)+3\sin\left(x\right)\right)^2=5-4\cos\left(2x\right)+\sin\left(2x\right)$
$\lim_{x\to\pi}\left(\frac{sin\left(2x\right)}{x-\pi}\right)$
$-617-\left(+352\right)-\left(-323\right)-\left(-839\right)+\left(+372\right)$
$\left(19x-2\right)+\left(6x+1\right)$
$-4\left(2\right)\cos\left(2x\right)\left(-2\sin\left(2x\right)\right)=8\sin\left(4x\right)$
$\frac{sen\:u}{1-cos\:u}=\frac{1+cos\:u}{sen\:u}$
$\int z^7dz$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!