$\lim_{x\to\infty}\left(\frac{2x^6-2x^2+x-3}{x^3+2x^2-x+1}\right)$
$10a+1+9+4a-2a+a+2$
$\lim_{x\to4}\left(\frac{x^2-16}{4\sqrt{x}-8}\right)$
$xy^{-6}\:\left(\:x^6\:y^1-y^{-1}+x^{-6}\:y^{-4}-xy^{-6}\:z+3\right)$
$8x\:-\:9\:\le\:1$
$\int ln\left(x+4\right)dx$
$\left(x^2+1\right)^3\left(2x-5\right)^2$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!