sin2c⋅sinc=cosc\sin2c\cdot\sin c=\cos csin2c⋅sinc=cosc
limx→−2(5x4−3x2−682x5−3x2−2x+8)\lim_{x\to-2}\left(\frac{5x^4-3x^2-68}{2x^5-3x^2-2x+8}\right)x→−2lim(2x5−3x2−2x+85x4−3x2−68)
∫sec2xtanx+1tanxdx\int\frac{\sec^2x}{\tan x}+\frac{1}{\tan x}dx∫tanxsec2x+tanx1dx
(5x6)(8x3)\left(5x^6\right)\left(8x^3\right)(5x6)(8x3)
(z2)(5xy5)(vx2z)(5xy5)\left(z^2\right)\left(5xy^5\right)\left(vx^2z\right)\left(5xy^5\right)(z2)(5xy5)(vx2z)(5xy5)
limx→4(3x+1)\lim_{x\to4}\left(3x+1\right)x→4lim(3x+1)
∫x3sin(3x4−7)dx\int x^3sin\left(3x^4-7\right)dx∫x3sin(3x4−7)dx
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!