$\frac{dy}{dx}=\frac{2y+4x}{2x}$
$\int\left(\frac{2q\ln\left(q^2+1\right)}{\left(q^2+1\right)}\right)dq$
$\tan^2\left(x\right)\sec^2\left(x\right)-\tan^2\left(x\right)$
$6x\left(8x+1\right)-3\left(4x+1\right)=6x+3$
$x\:in\:x$
$\int\left(e^{\left(2y-3\right)}\right)dx$
$\int\frac{2x-7}{x^2+2x-4}dx$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!