dydx=xy2+4xe2x\frac{dy}{dx}=\frac{xy^2+4x}{e^{2x}}dxdy=e2xxy2+4x
(y−20)(y+4)\left(y-20\right)\left(y+4\right)(y−20)(y+4)
−16−3−6+3+6+2−6+2−5−1-16-3-6+3+6+2-6+2-5-1−16−3−6+3+6+2−6+2−5−1
∫3x2+4dx\int\frac{3}{x^2+4}dx∫x2+43dx
[∣125∣:∣−5∣+(−6)]⋅(−3)\left[\left|125\right|:\left|-5\right|+\left(-6\right)\right]\cdot\left(-3\right)[∣125∣:∣−5∣+(−6)]⋅(−3)
3⋅sin(x)sec(x)tan(x)\frac{3\cdot sin\left(x\right)sec\left(x\right)}{tan\left(x\right)}tan(x)3⋅sin(x)sec(x)
(−2x2 y85x y5)4\left(\frac{-2x^2\:y^8}{5x\:y^5}\right)^4(5xy5−2x2y8)4
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!