$\lim_{x\to4}\left(\frac{x^2+4x-32}{2x-8}\right)$
$\left(\frac{\left(20x^3\:\:+\:6x\:+\:28\right)}{\left(10x+4\right)}\right)+20x+8$
$3m+10m-5m+30m$
$\left[\left(x^2\:-\:2y^2\:+\:3\right)\:+\:\left(3x^2\:+\:3y^2\:-\:6\right)\right]\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:$
$\lim_{x\to0}\left(\frac{ln\left(\frac{\left(1+\tan\left(x\right)\right)}{1+\sin\left(x\right)}\right)}{senx}\right)$
$\int\left(sin\:x\right)\left(1-cos^2x\right)^2dx$
$\left(ab^2\:-\:2x^2\right)^5$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!