$\left\{\left(2\cdot3\right)^2\right\}^0$
$\lim_{x\to2}\left(\frac{9x^2-4}{x}\right)$
$\int\frac{x^2}{\left(1+x^3\right)^{1.6}}dx$
$m=\left(x+2\right)^2-\left(2-x\right)^2+\left(x-4\right)^2-x^2-16$
$\lim_{x\to+\infty}\left(\frac{\sqrt{x^5+2x-6}}{x^3-4x+2}\right)$
$8x-8<-72$
$\int\left(2-\sqrt{\tan\left(b\right)}\right)^2\sec^2\left(x\right)dx$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!