$\lim_{x\to\infty}\left(2x^2+2x\right)^{\frac{1}{x^2}}$
$^{\left[\left(-32\right)+\left(-49\right)\right]}+\left[\left(+78\right)-\left(-28\right)-\left(-83\right)\right]$
$\frac{32y^3}{\left(y^2-5\right)^2}-\frac{32y}{y^2-5}-10y=0$
$-2\left(y-4\right)=\left(x-1\right)^{\left(2\right)}$
$\left(\frac{3}{5}m+\frac{1}{2\:}\right)\left(\frac{3}{5}m-\frac{1}{2\:}\right)$
$\lim_{x\to3}\left(\frac{5-5x^2}{4\tan\left(3x-3\right)}\right)$
$10x+8=8x+16$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!