$\frac{x\left(x\right)+5}{x+5}$
$\frac{33}{x^2\:+3x\:-28}$
$\lim_{x\to\infty}\left(\frac{2x^4+3}{5x^3-x^2+3}\right)$
$\int_0^{\frac{\pi}{4}}\left(\tan^4t\right)dt$
$\frac{dy}{dx}=\frac{\left(4x^2+3x+2\right)}{\left(2y+1\right)}$
$0.2q^2-34.4q-134.4$
$\left(-6a^3n^2\right)^2$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!