$\left(2+x^2\right)\left(4+x^6\right)$
$12x^2-6x+3$
$\left(4u^3+2\right)\left(5u^3+3\right)$
$\left(\frac{-1}{2}x^2y\right)\left(\frac{-3}{5}xy^2\right)\left(\frac{-10x^3}{3}\right)\left(\frac{-3}{4}x^2y\right)$
$\lim_{x\to\frac{9}{2}}\frac{2x^2-9x}{2x^2-x+6}$
$y=\left(x+2\right)^2\cdot\left(x-3\right)\:$
$x^2+\frac{-4}{x}+2$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!