$\frac{\sin\left(x\right)}{\cos\left(x\right)}=\frac{\sec\left(x\right)}{\csc\left(x\right)}$
$x^2-15x=450$
$1^{13}$
$\int_0^{\infty}\left(\frac{x^2}{\sin\left(x^2\right)}\right)dx$
$\lim_{x\to\infty}\left(\frac{2}{x+1}\right)$
$\frac{12\sin\left(x\right)\cos\left(x\right)}{\cos^2\left(x\right)-\sin^2\left(x\right)}$
$cos\left(x\right)+cos\left(x\right)cot^2\left(x\right)$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!