$\int\sqrt{9x+1}dx$
$\frac{d}{dx}x^3+y^2-x\cdot y=1$
$\left(7x^5-8^3y^4\right)$
$\lim_{x\to-4}\left(\frac{2x^2-9x+4}{4x^2+13x-12}\right)$
$\frac{dy}{dx}\left(2y-e^{xy^2}+3x\left(x+y\right)\right)$
$\frac{\left(2a^{-1}b^3\right)^4\left(2a^4b^{-4}\right)}{2b^{-2}}$
$\left(4x^{\frac{3}{4}}+2\right)\left(4x^{\frac{3}{4}}-2\right)$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!