$\lim_{x\to\infty}\left(\frac{e^x-2.cos\left(x\right)+e^{-x}}{x.\sin\left(x\right)}\right)$
$x+\frac{1}{2}<4$
$\cos\left(x\right)\sin\left(x\right)+\cos^3\left(x\right)\csc\left(x\right)=\csc\left(x\right)$
$\frac{dq}{dp}\:lnq^3=\:ln\left[\left(p-2\right)^{\frac{1}{2}}\:\right]\left(p^2-1\right)\left(p^4+6\right)$
$4\left(-2\right)\left(12\right)$
$dy=\left(5x-7\right)dx$
$\left(y\:4\:\right)\left(y\:3\:\right)$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!