43⋅(−33−45)43\cdot\left(-33-45\right)43⋅(−33−45)
limx→∞(3x3−6x2+3x+6−3x2+4x−4)\lim_{x\to\infty}\left(\frac{3x^3-6x^2+3x+6}{-3x^2+4x-4}\right)x→∞lim(−3x2+4x−43x3−6x2+3x+6)
9u+4u9u+4u9u+4u
∫(−3x)(32x)dx\int\left(-3x\right)\left(3^{2x}\right)dx∫(−3x)(32x)dx
(2a2b+5)(2a2b−5)\left(2a^2b+5\right)\left(2a^2b-5\right)(2a2b+5)(2a2b−5)
(x + 7)4\left(x\:+\:7\right)^4(x+7)4
x3+6x2+5x+1x−1\frac{x^3+6x^2+5x+1}{x-1}x−1x3+6x2+5x+1
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!