$\left(2x^{-3}y^2\right)^3\left(x^4y^5z^3\right)^4$
$\lim_{x\to-1}\left(\frac{x^3-3x-2}{\left(x+1\right)ln\left(2x+3\right)}\right)$
$\int\left(\ln\left(3t\right)\right)^2dt$
$log\left(x^2+3x+12\right)=2$
$2cos\left(3\:\theta\:\right)\:=\:-\sqrt{2}$
$2x+1\le3x+6$
$\sin\left(3x\right)\cos\left(x\right)+\cos\left(3x\right)\sin\left(x\right)$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!