$y'+ty=2t$
$\frac{a^2b}{5}-\frac{2ab^2}{3}+\frac{3ab^2}{2}+\frac{6a^2b}{5}$
$\int\left(\frac{x^2}{2}-\frac{2}{x^3}\right)dx$
$\lim_{x\to\infty}\left(\frac{4x}{lnx}\right)$
$8x^5+15x^4-12x^3-9x^2+10x-30\cdot x+1$
$\left(3\right)x\left(8\right)x\left(4\right)x\left(-1\right)$
$\frac{dy}{dx}\left(2^{x+y}=y^{\ln\left(2\right)}\right)$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!