Exercise
$2tanx-3sinx=0$
Step-by-step Solution
Learn how to solve problems step by step online. Solve the trigonometric equation 2tan(x)-3sin(x)=0. Applying the tangent identity: \displaystyle\tan\left(\theta\right)=\frac{\sin\left(\theta\right)}{\cos\left(\theta\right)}. Combine all terms into a single fraction with \cos\left(x\right) as common denominator. Using the sine double-angle identity: \sin\left(2\theta\right)=2\sin\left(\theta\right)\cos\left(\theta\right). Multiply the fraction and term in -3\cdot \left(\frac{1}{2}\right)\sin\left(2x\right).
Solve the trigonometric equation 2tan(x)-3sin(x)=0
Final answer to the exercise
$x=0+2\pi n,\:x=\pi+2\pi n\:,\:\:n\in\Z$