Exercise
$2csc^2\left(x\right)+cot^2\left(x\right)-3=0$
Step-by-step Solution
Learn how to solve problems step by step online. Solve the trigonometric equation 2csc(x)^2+cot(x)^2+-3=0. Applying the trigonometric identity: \cot\left(\theta \right)^2 = \csc\left(\theta \right)^2-1. Combining like terms 2\csc\left(x\right)^2 and \csc\left(x\right)^2. We need to isolate the dependent variable x, we can do that by simultaneously subtracting -4 from both sides of the equation. Applying the trigonometric identity: \csc\left(\theta \right)^2 = 1+\cot\left(\theta \right)^2.
Solve the trigonometric equation 2csc(x)^2+cot(x)^2+-3=0
Final answer to the exercise
$x=\frac{1}{3}\pi+2\pi n,\:x=\frac{2}{3}\pi+2\pi n\:,\:\:n\in\Z$