x3−2y′ = x2\sqrt{x^3-2}y'\:=\:x^2x3−2y′=x2
∫1+cos(2x)dx\int\sqrt{1+\cos\left(2x\right)}dx∫1+cos(2x)dx
−3(3)2+6(3)-3\left(3\right)^2+6\left(3\right)−3(3)2+6(3)
(35x)2−12 (35x)2+12\left(\frac{3}{5}x\right)^2-\frac{1}{2}\:\left(\frac{3}{5}x\right)^2+\frac{1}{2}(53x)2−21(53x)2+21
limx→∞(ln(5x+2)ln(10x+8)+6)\lim_{x\to\infty}\left(\frac{ln\left(5x+2\right)}{\ln\left(10x+8\right)+6}\right)x→∞lim(ln(10x+8)+6ln(5x+2))
2−4n2-4n2−4n
((sen(x)+cos(y))2−2)=0\left(\left(sen\left(x\right)+cos\left(y\right)\right)^2-2\right)=0((sen(x)+cos(y))2−2)=0
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!