$\int x^2\:cot^{-1}\left(3x\right)dx$
$\left(\sqrt[2]{7y}\right)^3$
$\left(h-9\right)^3$
$x=\frac{\left(n+1\right)^2\left(\left(n+1\right)^4-1\right)}{n^2\left(n^4-1\right)}$
$\int_{-\infty\:}^9\left(\frac{1}{2x-5}\right)dx$
$-4\ge-6s-8$
$\int\left(6x+2\right)\left(3x^2+2x\right)dx$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!