limx→∞x−2x+1\lim_{x\to\infty}\frac{x-2}{x+1}x→∞limx+1x−2
(−2m3)⋅(−5m)⋅(3m2)\left(-2m^3\right)\cdot\left(-5m\right)\cdot\left(3m^2\right)(−2m3)⋅(−5m)⋅(3m2)
dydx=−yx2+1x2y2\frac{dy}{dx}=-\frac{y}{x^2}+\frac{1}{x^2y^2}dxdy=−x2y+x2y21
(2x3+3x)2\left(2x^3+3x\right)^2(2x3+3x)2
12w24⋅8w64\sqrt[4]{12w^2}\cdot\sqrt[4]{8w^6}412w2⋅48w6
∫6x(x−2)(x+3)dx\int\frac{6x}{\left(x-2\right)\left(x+3\right)}dx∫(x−2)(x+3)6xdx
−5+(−7+3−(4−2+(4+3)−7))+5-5+\left(-7+3-\left(4-2+\left(4+3\right)-7\right)\right)+5−5+(−7+3−(4−2+(4+3)−7))+5
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!