$\frac{x^2+4}{x^4+1}<\frac{x^2+1}{x^4+1}$
$\frac{dy}{dx}=sin\left(2x-2y\right)$
$\lim_{x\to1}\left(\frac{\sin\left(2x-2\right)}{x-1}\right)$
$12x^2+6x+6$
$x^2+20x^2-6x$
$\frac { x + 4 } { x - y } = x$
$\lim_{x\to-6}\left(\frac{x^4-x^3}{x^2}\right)$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!