$\lim_{x\to0}\left(\frac{x\cdot\cos\left(x\right)}{\left(x+1\right)\sin\left(x\right)}\right)$
$-25:-5$
$\cos\:^2\left(\frac{\pi\:}{4}-\frac{\theta\:}{4}\right)-\sin\:^2\left(\frac{\pi\:}{4}-\frac{\theta\:}{4}\right)=\sin\:\left(\frac{\theta\:}{2}\right)$
$\lim_{x\to0}\left(\frac{ln\left(1+\left(\left(sin\left(2\cdot\:x\right)\right)^2\right)\right)}{1-\left(cos\left(x\right)\right)^2}\right)$
$\frac{\sqrt{4-3}-1}{4-4}$
$\left(2\right)^4-3\left(2\right)^3+5\left(2\right)^2-10\left(2\right)+11$
$\left(x^2-1\right)y=16$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!