$\left(x-1\right)\cdot\left(x^2+x+1\right)$
$\frac{\sin\left(4x\right)}{1+\cos\left(4x\right)}=\frac{\sqrt{3}}{3}$
$m+b=5$
$\left(-2a^2b^4-7a^4b^2\right)^2$
$\frac{1-z^3}{\left(1+\sqrt{2}\right)\left(1-\sqrt{z}\right)}$
$\int\frac{x^4}{\sqrt{4+x^2}}dx$
$\lim_{x\to\infty}\left(\frac{2x^3-2x^2}{x^3+2x^2}\right)$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!