$f\left(x\right)=\left(x+4\right)^3\left(8x-9\right)^5$
$\int\frac{x^3+x^2+x+3}{x^4-4x+3}dx$
$\int\frac{\left(x+1\right)}{\left(x+7\right)\left(x^2+6x+9\right)}dx$
$3x\:+\:15\:+\:6x\:-\:7\:+\:y$
$625x^4-125x^3+10x^2\cdot25^2$
$\int\left(4x^2+2\right)\cdot8x\:dx$
$-2y^3+3y+7y^3+1+2-5$
Get a preview of step-by-step solutions.
Earn solution credits, which you can redeem for complete step-by-step solutions.
Save your favorite problems.
Become premium to access unlimited solutions, download solutions, discounts and more!